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INTRODUCTION

•	 Uveal melanoma is the most common primary intraocular 
malignant tumor in adults.1

•	 About 50% of patients develop metastases to the liver within 
15 years of their initial diagnosis.2

•	 There is currently no effective standard of care treatment for 
patients with metastatic uveal melanoma, with median survival 
reported to be <6 months.2,3

•	 Uveal melanoma is characterized by frequent mutations in two 
genes encoding guanine nucleotide binding protein (G-protein) 
α-subunits (Gα): G-protein Q polypeptide 1 (GNAQ) and  
G-protein alpha 11 (GNA11). These mediate signaling from 
G-protein coupled receptors to downstream signaling 
pathways, including protein kinase C (PKC) (Figure 1).4,5

•	 Mutations in GNAQ/GNA11 may be the genetic drivers leading 
to the development of uveal melanoma by causing constitutive 
activation of pathways involving these genes.4, 5

•	 Here, we conducted genomic profiling of tumor biopsies from 
patients with metastatic uveal melanoma.

Figure 1. Putative Cellular Functions of Commonly Altered 
Proteins in Uveal Melanoma; Activating Mutations in Gαq 
Subunits GNAQ and GNA11 are Frequent
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*Proteins in red are encoded by genes known to be altered in uveal melanoma. 
ASXL1, additional sex combs-like protein 1; BAP1, BRCA1-associated protein; BRCA1, breast cancer 1, early onset; 
DAG, diacylglyceraol; EIF1AX, eukaryotic translation initiation factor 1A, X-chromosomal; ERK, extracellular-
regulated kinase; Gα, G-protein α-subunit; Gαq, G-protein αq-subunit; GPCR, G-protein-coupled receptor;  
H2A, histone 2A; HCF-1, host cell factor 1; MARCKS, myristoylated alanine-rich C-kinase substrate;  
MEK, mitogen-activated protein kinase/ERK kinase; PKC, protein kinase C; PLC, phosphoinositide-specific 
phospholipase C; RAF, rapidly accelerated fibrosarcoma; SF3B1, splicing factor 3B subunit 1.

STUDY OBJECTIVES
•	 To characterize the genetic landscape of tumors from patients 

with metastatic uveal melanoma in the Phase I study with 
AEB071, an oral selective PKC inhibitor.5

	 –	� To determine the frequency and number of baseline gene 
alterations in samples from metastases (formalin-fixed 
paraffin-embedded [FFPE] or archival tumor tissue).

•	 To investigate the potential association of genetic alterations 
with baseline levels of phosphorylated myristoylated alanine-rich 
C-kinase substrate (pMARCKS), as an indicator of PKC activity.

METHODS

Study Design

•	 Patients with biopsy-proven metastatic uveal melanoma were 
enrolled in a Phase I, multicenter, open-label, single-arm study 
of AEB071.6

•	 Patients received oral AEB071 in one of two dosing schedules 
at total daily doses ranging from 450 mg to 1400 mg, twice daily 
or three times daily until disease progression, intolerable toxicity 
or withdrawal of consent.6

•	 At baseline, two core needle biopsies were required from each 
patient for study enrollment.

	 –	� If tumor tissue was accessible through a minimally invasive 
biopsy, then a fresh, pre-dose core needle tumor biopsy was 
required.

	 –	� If a fresh biopsy could not be collected safely at study entry, an 
archival tumor sample from a metastatic lesion was required.

•	 At least one post-treatment core needle biopsy was also obtained, 
prior to the morning dose of AEB071 on Cycle (C) 1 Day (D) 15.

Assessments

•	 Genomic profiling of FFPE biopsies from patients with 
metastatic uveal melanoma, primarily from liver.

	 –	� Genomic profiling was conducted on the baseline 
pre‑treatment biopsy specimens.

	 –	� DNA was assayed by massively parallel sequencing, 
covering a panel of 288 clinically relevant cancer genes  
at Foundation Medicine.

	 –	� Sequencing was performed at high depth (median 611X) 
to characterize mutations, amplifications (≥ 6 copies), 
homozygous deletions and loss of heterozygosity (LOH).

	 –	� If baseline samples were found to contain insufficient DNA or 
to have insufficient sequence coverage, the C1D15 sample 
was analyzed. If this also failed to meet tissue requirements, 
the sample was excluded from further analysis.

Figure 5. Normalized pMARCKS at Baseline vs Genotype (Full 
Analysis Set)
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CONCLUSIONS
•	 Genomic profiling has demonstrated that 94% of patients with 

uveal melanoma had a known activating mutation in either 
GNAQ or GNA11.

•	 BAP1 mutations were frequently identified in patients with 
chromosome 8q amplifications and rarely identified in patients with 
SF3B1 mutations. This suggests complimentary and redundant 
consequences of these lesions with BAP1 mutations, respectively.

•	 High-depth sequencing of clinical patient metastases sheds 
new light on the interplay among the small group of genetic 
alterations observed in uveal melanoma.
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•	 Mutations of known or likely functional impact were 

otherwise rare.

•	 Somatic alterations in uveal melanoma patients are shown in 

Figure 4. Genes with mutations in fewer than two patients are not 

shown, nor are short variants of unknown functional significance. 

LOH is only included for BAP1.

•	 The positions of sequenced genes on chromosome 8 are 

indicated in Figure 4. No copy number alterations were reported 

for the four sequenced genes on chromosome 8p.

•	 Of interest, P53, P16 and SWI/SNF related, matrix associated, 

actin-dependent regulator of chromatin, subfamily A, member 4 

(SMARCA4) mutations were only observed in the tumors of two 

patients each, and mutations in 25 genes were observed in a 

single patient (Figure 2).

Figure 4. Somatic Alterations in Uveal Melanoma Patients
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Pharmacodynamics

•	 52 paired tumor biopsy samples were analyzed to investigate 

the effect of genetic subtype on baseline levels of pMARCKS.

•	 Preliminary analyses of the currently available data suggest no 

obvious relationship between pMARCKS baseline levels with 

any gene or GNAQ/GNA11 mutant subtypes (Figure 5).

Figure 2. Somatic Gene Alterations Observed in Tumor Samples 
Using Next Generation Sequencing Analysis, by Type of 
Alteration (A) and Gene (B)

Figure 3. Top Mutated Genes in Skin Melanoma7
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	 –	� 110 patient samples were collected. Of these, sequencing 
was successful in 82 samples and results are shown for  
76 samples.

•	 Determination of pMARCKS levels (pharmacodynamic 
biomarker) in tumor samples.

	 –	� Fresh core needle biopsies were collected at baseline and 
on C1D15.

	 –	� The samples were frozen immediately after collection, until 
analysis.

	 –	� Immediately prior to analysis, the samples were thawed, 
lysed, and then total protein yield was measured.

	 –	� Levels of MARCKS and pMARCKS (S152/156) were 
measured using a custom assay on the MesoScale Discovery 
platform, and a reference cell lysate was used for calibration.

RESULTS

Genetic Alterations

•	 Alterations of known or likely functional significance were 
frequent only in genes previously implicated in uveal melanoma 
(Figure 2).

	 –	� These were distinct from the mutational profile of skin 
melanoma (Figure 3).

	 –	� Two novel patterns were observed.

•	 As expected in uveal melanoma biopsies, a large proportion of 
patients (94%) were found to have activating mutations in either 
GNAQ (59%; Q209P/L/R or R183Q) or GNA11 (36%; Q209L/H).

•	 The high prevalence of GNAQ/GNA11 mutations reported here 
is likely due to the sequencing depth, as evidenced by low 
allele frequencies in some patients even after correcting for 
tumor purity.

•	 Among the five samples without a GNAQ or GNA11 mutation, 
all had very low tumor content (≤20%).

•	 Truncations or splice-site mutations in the gene encoding 
BRCA1 associated protein-1 (BAP1) were frequently observed 
(51%), in line with previous reports (Figure 2).

•	 Partial or putatively complete amplifications of chromosome 
8q (59%) and recurrent mutations in splicing factor 3B subunit 
1 (SF3B1) [23%; R625C/H or V701F] were usually mutually 
exclusive, which is a pattern previously unreported (Figure 2).

•	 In addition, BAP1 mutations were frequent in patients with 
chromosome 8q amplifications (33/48 [69%]), and rare in 
patients with SF3B1 mutations (4/19 [21%]) [Figure 4]. 

•	 Among the 63 patient samples in which LOH could be 
evaluated, BAP1-spanning LOH occurred in 45 patients (71%), 
including 35 of 39 patients (90%) with BAP1 mutations.
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